Space

NASA Continues Progress on Artemis III Rocket Adapter with Key Joint Installation

Engineers and technicians at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently installed a key component called the

NASA Continues Progress on Artemis III Rocket Adapter with Key Joint Installation


Engineers and technicians at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently installed a key component called the frangible joint assembly onto the adapter that connects the core stage to the upper part of the NASA’s SLS (Space Launch System) rocket. The cone-shaped stage adapter, called the launch vehicle stage adapter, will be part of the SLS mega rocket that will power NASA’s Artemis III mission to the Moon. The frangible joint sits atop the adapter and operates as a separation mechanism. The frangible joint is designed to break apart upon command, allowing the upper part of the rocket, NASA’s Orion spacecraft, and the crew inside Orion to quickly separate from the SLS core stage and adapter. Frangible joint assemblies are widely used across the space industry in a variety of crewed and uncrewed spacecraft to efficiently separate fairings or stages during launch, during ascent, in orbit and during payload deployment. The stage adapter used for Artemis III is set to be the last of its kind as SLS evolves into a larger and more powerful configuration for future Artemis missions, beginning with Artemis IV. The adapter is fully assembled at Marshall by NASA and lead contractor Teledyne Brown, which is also based in Huntsville.

SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

For more on NASA SLS, visit:

https://www.nasa.gov/sls

News Media Contact

Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov



Source link

About Author

IndianCyberDefender